КОМПРЕССОР

0
1528

НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ
ЦЕНТРОБЕЖНОГО КОМПРЕССОРА

Компрессор газотурбинного двигателя предназначен для сжатия воздуха и подачи его в камеру сгорания. Сжатие воздуха необходимо для более полного преоб­разования подводимого в камеру сгорания тепла в ки­нетическую энергию газового потока. Это наглядно вид­но из формулы, выражающей зависимость термическо­го коэффициента полезного действия двигателя (щ) от степени повышения давления компрессора

к—1

тц=1 —Лк к,

где лк — степень повышения давления в компрессоре; к — показатель адиабаты.

Анализ формулы показывает, что при отсутствии сжатия (лк=1) термический КПД равен нулю и, сле­довательно, введенное в двигатель тепло в результате сгорания топлива не идет на увеличение кинетической энергии газа. С увеличением степени повышения дав­ления повышается термический КПД, возрастает эф­фективность использования подводимого в двигатель тепла. Поэтому одним из основных требований, предъ­являемых к компрессорам, наряду с требованиями обес­печения надежной и устойчивой работы на всех эксплуа­тационных* режимах, предъявляются требования обес­печить возможность получения больших степеней сжа­тия при малой массе и габаритах.

Возможность удовлетворения этих требований в зна­чительной степени определяется конструкцией компрес­сора. По конструкции компрессоры современных авиационных двигателей разделяются на два типа: центробежные и осевые.

Центробежные компрессоры имеют целый ряд пре­имуществ перед осевыми: простота конструкции и ма­лая трудоемкость в изготовлении, удовлетворительная характеристика при переменных режимах работы, воз­можность получения больших степеней повышения дав­ления в одной ступени (яСт = 3…6).

Основные недостатки центробежных компрессоров по сравнению с осевыми — меньший КПД, небольшая пропускная способность и большие габаритные разме­ры в поперечном направлении.

Осевые компрессоры имеют более высокий коэффи­циент полезного действия, большую пропускную способ­ность, выполняются многоступенчатыми, а потому име­ют более высокую степень повышения давления и, сле­довательно, более высокий КПД, однако они более сложны и дороги в изготовлении, менее устойчивы в газодинамическом отношении и менее надежны в экс­плуатации.

Высокая надежность, простота конструкции и боль­шая газодинамическая устойчивость предопределили использование на двигателе М701 центробежного ком­прессора.

Центробежный компрессор (рис. 85) состоит из ро­тора и статора. Лопатки вращающегося направляюще­го аппарата (воздухозаборника) совместно с лопатками рабочего колеса образуют межлопаточные каналы и вместе с корпусом — проточную часть компрессора.

Рабочее колесо с вращающимся направляющим ап­паратом (ВНА) и валом образуют ротор компрессора, а корпус компрессора с диффузором — его статор. Вра­щающийся направляющий аппарат — это спрофилиро­ванный лопаточный венец, обеспечивающий безударный вход воздуха на лопатки рабочего колеса.

На входе во ВНА величина и направление относи­тельной скорости W определяются величинами абсо­лютной скорости С и изменяющейся по высоте лопаток окружной скорости U (рис. 86).

Для обеспечения безударного входа углы загиба ло­паток ВНА делают близкими к углам направле­ния относительной скорости Wi. Поскольку направле­ние относительной скорости меняется по высоте лопат­ки, углы загиба лопаток ВНА также изменяются про­порционально высоте лопатки, увеличиваясь от втулки к периферии.

Рис. 85. Про­дольный раз­рез компрессо­ра двигателя М70ІС-500:

1—входной кор­пус компрессо­ра; 2—передняя стенка компрес­сора; 3—перед­нее опорное кольцо лопаточ­ного диффузо­ра; 4 — фланец отбора воздуха для охлажде­ния узла тур­бины; 5—заднее опорное кольцо лопаточного диффузора; 6— крыльчатка компрессора;

7 — передний вал; 8 — основ­ной вал ротора; 9 — силовой ко­нус; 10—задний корпус компрес­сора; 11 — гор­ловина заднего корпуса ком­прессора; 12— нижний узел крепления дви­гателя; 13—ло­патка диффузо­ра; 14—штифт; 15 — передний подшипник с корпусом пе­реднего уплот­нения; 16—вра­щающийся на­правляющий ап­парат крыль­чатки компрес­сора

В межлопаточных каналах происходит поворот воз­душного потока, вращающийся направляющий аппарат вовлекает воздушный поток во вращение, закручивает его и сообщает ему кинетическую энергию вращатель­ного движения.

Рис. 86. Треугольник ско-
ростей воздуха на входе В;
колесо центробежного ком-
прессора

В межлопаточных каналах колеса центро­бежного компрессора.: поток воздуха, посту — ^ лающий из ВНА, дви­жется в направлении от центра к периферии с непрерывным возра­станием окружной ско­рости. На двигателе М701 окружная ско­рость колеса компрес­сора меняется от 130 м/с у втулки до 450 м/с на периферии (на максимальном режиме работы дви­гателя). Вращение потока вызывает появление центро­бежных сил, повышающих давление воздуха. Таким образом, из колеса выходит закрученный воздушный поток с большой скоростью, т. е. обладающий большой кинетической энергией.

Из колеса воздушный поток поступает в диффузор, в котором полученная кинетическая энергия превраща­ется в работу сжатия. Поэтому на выходе из диффу­зора скорость воздуха уменьшается, а давление и тем­пература увеличиваются.

Процесс сжатия воздуха в компрессоре происходит с определенными потерями. Так, вследствие вязкости воздуха при вращении колеса происходит трение возду­ха, окружающего колесо, и воздуха, движущегося по межлопаточным каналам, о стенки колеса. Это трение создает дополнительный момент сопротивления враще­нию колеса и требует на его преодоление затрат допол­нительной работы, которая входит составной частью в работу, затрачиваемую на вращение компрессора. Ос­новную часть потерь вызывает трение торцевых повен ч — ностей лопаток колеса и воздуха, движущегося по э:" му колесу, о воздух, находящийся в осевых зазорах между колесом и корпусом компрессора.

Кроме трения воздуха, увлеченного во вращение ло­патками колеса, о стенки корпуса значительное влия­ние на величину потерь оказывает перетекание воздуха по зазорам между торцами лопаток и стенкой корпуса. Это приводит к возникновению дополнительных гидрав­лических потерь. Перетекание воздуха обусловливается наличием разности давлений с обеих сторон лопатки колеса, которая, в свою очередь, является следствием радиального относительного движения воздуха в коле­се и абсолютного движения по спирали с возрастающей окружной скоростью, вызывающих появление сил, дей­ствующих перпендикулярно относительной скорости в сторону, обратную направлению движения. Действие этих сил создает перепад давления по обе стороны ло­паток, что является источником возникновения момен­та сопротивления, на преодоление которого необходимо затратить работу. Поскольку величина зазора между лопатками колеса компрессора и корпусом существенно влияет на величину потерь, а следовательно, и на коэф­фициент полезного действия компрессора, этот зазор конструктивно стараются сделать минимальным.