Шарнирные моменты органой УПРАВЛЕНИЯ САМОЛЕТОМ

Аэродинамическими шарнирными моментами называю? моменты аэродинамических сил, действующих на органы управления относительно их осей вращения.

Шарнирный момент считается положительным, если он стремится отклонить руль (элерон) в положительном направлении.

У самолетов с обратимой системой управления от величины шарнирных моментов зависят усилия, прикладываемые летчиком к рычагам управления. При автоматическом или ручном управлении с рулевым приводом (бустером) шарнирными моментами определяется мощность рулевого привода, отклоняющего органы управления.

Шарнирный момент любого органа управления

Мш = отш5рЬдрА0И7> (10.112)

где тш — коэффициент шарнирного момента; Sp, Ьдр — соответ­ственно площадь и средняя аэродинамическая хорда органа управле­ния; kon — коэффициент торможения потока в области оперения.

У современных скоростных самолетов, имеющих большие раз­меры органов управления и совершающих полет с большими ско­ростными напорами, шарнирные моменты велики. Снизить величину шарнирного момента можно уменьшением коэффициента тш при помощи аэродинамической компенсации. Рассмотрим основные виды аэродинамической компенсации.

Осевая компенсация. При смещении оси вращения назад от передней кромки часть руля, находящаяся перед осью вращения (компенсатор), создает шарнир­ный момент обратного знака. Это приведет к уменьшению суммарного шарнирного момента руля (рис. 10.19, а). Если ось вращения совместить с центром давления руля, шарнирный момент станет равным нулю — наступит полная компенсация. При дальнейшем смещении оси вращения назад наступит перекомпенсация и изме — . интся знак шарнирного момента.

image111

Рис. 10.19. Основные виды аэродинамической компенсации и схема работы трим­мера: • ‘

о — осевая; б — внутренняя; в — сервокомпенсация; г — с помощью триммера; / — ось вращения; 2 — компенсатор; 3 — тяга управления рулем; 4 — триммер; Б — тяга управ­ления триммером

Осевая компенсация наиболее распространена из-за простоты конструктивного выполнения и хороших аэродинамических характеристик, однако осложняется тем, что положение центра давления руля зависит от числа М полета.

Внутренняя компенсация близка по идее к осевой и чаще применяется иа эле­ронах (см. рис. ‘10.19, б). Шарнирный момент уменьшается благодаря моменту сил, действующих на компенсатор, расположенный в полости с узкими щелями внутри крыла (оперения). Верхняя часть полости герметически отделена от нижней гибкой диафрагмой. Компенсатор воздушным потоком не обтекается, а находится под дей­ствием разности давлений, возникающей в полости при отклонении элерона (руля). Компенсатор не вносит возмущений в поток, что особенно важно при больших чис­лах М. Недостатком такой компенсации является ограничение диапазона откло­нения органов управления, в особенности, при тонком профиле крыла (оперения).

Сервокомпеисация—это дополнительный руль, кинематически связанный с основным рулем и неподвижной частью оперения так, что при отклонении основ­ного руля иа некоторый угол сервокомпенсатор отклоняется на пропорциональный ему угол в противоположную сторону (см. рис. 10.19, в). При этом на сервокомпен­сатор действуют аэродинамические силы, уменьшающие’ шарнирный момент руля.

На легких дозвуковых самолетах применяется роговая компенсация, пред­ставляющая собой часть поверхности руля, вынесенную впереди оси вращения и расположенную у края рулей. Недостатком такой компенсации является возмож­ность возникновения тряски оперения из-за срыва потока при больших углах отклонения руля.

Уменьшить шарнирный момент руля высоты можно также отклонением (пере­становкой) подвижного стабилизатора.

Аэродинамическая компенсация, если она правильно подобрана, уменьшает шарнирный момент, но не. сводит его к нулю.

При продолжительном полете на каком-либо режиме целесо­образно шарнирный момент свести к нулю. Для этой цеди приме­няются триммеры.

Триммер представляет собой вспомогательную поверхность на задней части руля или элерона, не связанную кинематически с от­клонением руля (см. рис. 10.19, г). Управление триммером само­стоятельное из кабины летчика. ■ • ‘

. Для получения нулевого шарнирного момента триммер откло­няется на соответствующий угол, противоположный по знаку углу отклонения основного руля.

При определении шарнирных моментов единственно надежным способом является экспериментальный.

Результаты обработки экспериментальных данных показывают, что в пределах плавного, обтекания коэффициенты шарнирных моментов являются Линейными функциями углов атаки (сНольження), углов отклонения рулей (элеронов) и триммера

тш. э="О* + тшК + <0*э;

(10.113)

‘ш. в ~ <Г — °«г. о + тшК + <EV

(10.114)

тш. н = тшР + тш6п + тшТн-

(10.115)

Приближенные расчетные формулы для оценки производных шарнирных моментов при проектировании приведены в [9].

На величину коэффициента шарнирного момента значительное влияние оказывает сжимаемость воздуха. С наступлением волнового

Рис. 10.20. Примерная зависимость коэффи­циента тш от числа М

image112кризиса центр давления на рулевых поверхностях перемещается назад и коэффициент шарнирного момента на околозвуковых скоростях резко возрастает (рис. 10.20),